
SteakWallet
Mobile App Pentest

Prepared by: Halborn

Date of Engagement: March 4th, 2022 - April 7th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 4

CONTACTS 4

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 10

3 FINDINGS & TECH DETAILS 11

3.1 (HAL-01) CERTIFICATE PINNING BYPASS FOR MULTIPLE DOMAINS -

MEDIUM 13

Description 13

Proof of concept 14

Risk Level 14

Recommendation 15

Remediation Plan 15

3.2 (HAL-02) LACK OF ANTI TAMPERING MECHANISMS - MEDIUM 16

Description 16

Proof Of Concept (iOS) 16

Proof Of Concept (Android) 17

Risk Level 17

Recommendation 18

Remediation Plan 18

1



3.3 (HAL-03) MISCONFIGURED ATS (APP TRANSPORT SECURITY) - LOW 19

Description 19

Risk Level 20

Recommendation 20

Remediation Plan 21

3.4 (HAL-04) LACK OF ANTI-HOOK ANTI-DEBUG MECHANISMS - LOW 22

Description 22

Example Command 22

Risk Level 23

Recommendation 23

Remediation Plan 23

3.5 (HAL-05) MMKV LOGS LEAKED - LOW 24

Description 24

Proof Of Concept 24

Risk Level 25

Recommendation 25

Remediation Plan 25

3.6 (HAL-06) HARDCODED API KEYS - INFORMATIONAL 26

Description 26

Proof Of Concept 26

Risk Level 27

Recommendation 27

Remediation Plan 28

3.7 (HAL-07) DEFAULT SEED KEY ON RANDOMBYTESMODULE - INFORMATIONAL

29

2



Description 29

Proof Of Concept 29

Risk Level 30

Recommendation 30

Remediation Plan 31

4 PERFORMED TESTS 32

4.1 Testing Application Binary Protection 33

Proof Of Concept - iOS 33

4.2 Result 34

4.3 Testing Keychain Secrets 35

Description 35

Proof of Concept (iOS) 35

Proof of Concept (Android) 36

Result 36

3



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 03/17/2022 Pablo Gómez

0.2 Draft Review 04/07/2022 Gabi Urrutia

1.0 Remediation Plan 07/26/2022 Pablo Gómez

1.1 Remediation Plan Review 07/29/2022 Gabi Urrutia

1.2 Minor changes 07/29/2022 Pablo Gómez

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Pablo Gómez Halborn Pablo.Gomez@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Pablo.Gomez@halborn.com


5

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

The SteakWallet app allows users to keep staking their crypto assets over

a wide range of blockchain networks. In addition, they can operate with

them as a regular Wallet and deposit or withdraw most of the top known

cryptocurrencies and tokens.

SteakWallet engaged Halborn to conduct a security assessment on their

mobile applications, both Android and iOS on March 4th, 2022 and ending

on April 7th, 2022. The security assessment was scoped to Android and

iOS SteakWallet Applications. The client team provided the application

source code for Halborn to conduct security testing using tools to scan,

detect, validate possible vulnerabilities and report findings at end of

engagement.

Since attackers can find new attack vectors and ways to exploit information

security, and penetration tests are based on manual human testing, it is

worth noting that this assessment does not represent any guarantee that

applications are completely secure. Nevertheless, the tools and methods

used by attackers have been used to ensure the highest level of security.

1.2 AUDIT SUMMARY

The team at Halborn was provided a month for the engagement and assigned

a full-time security engineer to audit the security of the assets in

scope. The engineer is a blockchain and smart contract security expert

with advanced mobile penetration testing, smart-contract hacking, and

deep knowledge of multiple.

The goals of our security audits are to improve the quality of systems

we review and to target sufficient remediation to help protect users.

In summary, Halborn identified some security risks that were mostly

addressed by the SteakWallet Team.

6

EX
EC

UT
IV

E
OV

ER
VI

EW



1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy regarding

the scope of the pentest. While manual testing is recommended to uncover

flaws in logic, process and implementation; automated testing techniques

assist enhance coverage of the infrastructure and can quickly identify

flaws in it.

The following phases and associated tools were used throughout the term

of the audit:

• Storing private keys and assets securely.

• Send/Receive tokens and assets securely to another wallet.

• Exposure of any critical information during user interactions with

the blockchain and external libraries.

• Any attack that impacts funds, such as draining or manipulating of

funds.

• Application Logic Flaws.

• Areas where insufficient validation allows for hostile input.

• Application of cryptography to protect secrets;

• Brute Force Attempts.

• Input Handling.

• Fuzzing of all input parameters.

• Technology stack-specific vulnerabilities and Code Audit.

• Known vulnerabilities in 3rd party / OSS dependencies.

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the risk

assessment methodology by measuring the LIKELIHOOD of a security incident

and the IMPACT should an incident occur. This framework works for commu-

nicating the characteristics and impacts of technology vulnerabilities.

The quantitative model ensures repeatable and accurate measurement while

enabling users to see the underlying vulnerability characteristics that

were used to generate the Risk scores. For every vulnerability, a risk

7

EX
EC

UT
IV

E
OV

ER
VI

EW



level will be calculated on a scale of 5 to 1 with 5 being the highest

likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to:

1. SteakWallet Mobile Applications

(a) Applications in the scope:

i. SteakWallet Github

Monorepo URL: https://github.com/steakwallet/monorepo

OUT-OF-SCOPE:

External libraries.

9

EX
EC

UT
IV

E
OV

ER
VI

EW



2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

0 0 2 3 2

IM
PA
CT

LIKELIHOOD

(HAL-03) (HAL-02)

(HAL-01)

(HAL-04)

(HAL-06)
(HAL-07)

(HAL-05)

10

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - CERTIFICATE PINNING BYPASS
FOR MULTIPLE DOMAINS

Medium SOLVED - 07/26/2022

HAL02 - LACK OF ANTI-TAMPERING
MECHANISM

Medium RISK ACCEPTED

HAL03 - MISCONFIGURED ATS (APP
TRANSPORT SECURITY)

Low SOLVED - 07/26/2022

HAL04 - LACK OF ANTI-HOOK
ANTI-DEBUG MECHANISMS

Low SOLVED - 07/26/2022

HAL05 - MMKV LOGS LEAKED Low SOLVED - 07/26/2022

HAL06 - HARDCODED API KEYS Informational FUTURE RELEASE

HAL07 - DEFAULT SEED KEY ON
RANDOMBYTESMODULE

Informational FUTURE RELEASE

11

EX
EC

UT
IV

E
OV

ER
VI

EW



12

FINDINGS & TECH
DETAILS



3.1 (HAL-01) CERTIFICATE PINNING
BYPASS FOR MULTIPLE DOMAINS -
MEDIUM

Description:

Certificate pinning is the process of associating the backend server

with a particular X.509 certificate or public key, instead of accepting

any certificate signed by a trusted certificate authority (CA). After

storing (“pinning”) the server’s certificate or public key, the mobile

app will subsequently connect only to the known server. Withdrawing trust

from external CAs reduces the attack surface (after all, there are many

cases of CAs being compromised or tricked into issuing certificates to

impostors).

The certificate can be pinned and hardcoded in the app or retrieved at

the time the app first connects to the backend. In the latter case, the

certificate is associated (“pinned” to) the host when the host is first

seen. This alternative is less secure because attackers intercepting the

initial connection can inject their certificates.

The target application has not correctly implemented SSL pinning on iOS

when establishing a trusted connection between the mobile applications

and the back-end web services. Without enforcing SSL pinning, an attacker

could man-in-the-middle the connection between mobile applications and

back-end web services. This allows an attacker to sniff user credentials,

session ID, etc. Certificate pinning is used in modern applications to

prevent users from intercepting and analyzing HTTP traffic. Using this

method, an application can verify the server’s certificate and, in case

there is a Man-in-The-Middle, not trust any other certificate than the

one stored as default. There are many ways to perform this security

counter measure, and taking it in place does not ensure that a motivated

attacker will be able to bypass it in time, but it does represent the

first wall of defense against HTTP attacks.

SteakWallet implements SSL Pinning, but it uses some methods with common

13

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



names on iOS, which can be easily bypassed when performing application

hooking and method tracing. Nevertheless, on Android it has not been

possible to intercept traffic.

Proof of concept:

1. Connect to the application using Frida and Objection

Listing 1

1 objection --gadget fi.thesteakwallet.app explore

2. Set the automatic certificate pinning bypass implemented by objection

Listing 2

1 ios sslpinning disable

As it can be seen below, the SSL_CTX_SetCustomVerify method is triggered

and modified at runtime. In addition, plain traffic capture evidence is

shown on left side:

Risk Level:

Likelihood - 4

Impact - 3

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to prevent these actions by enforcing anti-tampering and

anti-debugging mechanisms. This vulnerability is related to jailbreak and

rooting detection and anti-debug and anti-tampering (following). Having

methods that cannot be triggered by name and anti-hooking, debugging

and rooting detection mechanisms should be enough to start preventing

certificate pinning bypass. Additionally, an application should follow

the following best practices:

• Set an HTTP Public Key Pinning (HPKP) policy that is communicated

to the client application and/or supports HPKP in the client appli-

cation, if applicable.

• Apple suggests pinning a CA public key by specifying it in the

Info.plist file in App Transport Security Settings.

• TrustKit, an open-source SSL pinning library for iOS and macOS is

available. It provides an easy-to-use API to implement pinning and

has been deployed in many apps.

References:

• iOS Security Suite

• Configure Server Certificates - iOS

• OWASP Pinning Cheat Sheet

• Guidelines Towards Secure SSL Pinning in Mobile Applications

Remediation Plan:

SOLVED: Since the application keeps crashing when executing on rooted/-

jalbroken devices or when using a patched app, it is a direct consequence

of certificate pinning not being bypassable as before.

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/datatheorem/TrustKit
https://github.com/securing/IOSSecuritySuite
https://developer.apple.com/news/?id=g9ejcf8y
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Pinning_Cheat_Sheet.md
https://idus.us.es/bitstream/handle/11441/97330/ropero-rodriguez_ponencia_caceres_2019_guidelines.pdf?sequence=1&isAllowed=y


3.2 (HAL-02) LACK OF ANTI TAMPERING
MECHANISMS - MEDIUM

Description:

With the difficulty of jailbreaking iOS and rooting Android devices in-

creasing with each new version released, repacking and resigning applica-

tions for sideload on non-rooted devices has been a topic of considerable

interest among security researchers recently.

For iOS devices, due to several code signing applications implemented

in the kernel, sideloading applications is restricted on non-jailbroken

devices. This is done to prevent malicious actors from distributing and

running untrusted code on the devices of unsuspecting users. This code

signing enforcement, with Apple’s AppStore application review process,

has significantly reduced the distribution of malicious applications to

iOS users.

On Android, there are fewer protection measures, since the full APK can

be downloaded directly from memory or from many web services that allow

any user to download these files.

All that being said, Halborn Team has been able to successfully make

modifications and execute the Android APK and iOS IPA files.

Proof Of Concept (iOS):

1. ‘Run the following commands:

Listing 3

1 ./ Clutch --dump com.thesteakwallet.app

2 unzip SteawWallet.ipa

2. Change some source file in Payload folder

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3. Create an Empty Project on XCode and install it on the device to

generate the provisioning files (embedded.mobileprovision)

4. Run the following commands

Listing 4

1 fastlane sigh resign SteakWallet.ipa --signing_identity "Apple

ë Development: pablo.gomez@halborn.com" -p embedded.mobileprovision

5. Use ideviceinstaller or ios-deploy to install the application on the

device.

Proof Of Concept (Android):

1. Download the app from the memory or from the APK repository

2. Modify files within the application

3. Run the following commands

Listing 5

1 keytool -genkey -v -keystore my -release -key.keystore -alias

ë halborn_signed -keyalg RSA -keysize 2048 -validity 10000

2 apktool d ${app_name }.apk

3 apktool b -f -d ${app_name}

4 jarsigner -verbose -sigalg SHA1withRSA -digestalg SHA1 -keystore

ë my -release -key.keystore ${app_name }/dist/${app_name }.apk

ë halborn_signed

5 jarsigner -verify -verbose -certs ${app_name }/dist/${app_name }.apk

6 ~/ Library/Android/sdk/build -tools /32.1.0 - rc1/zipalign -p -v 4 ${

ë app_name }/dist/${app_name }.apk signed -${app_name }.apk

Risk Level:

Likelihood - 2

Impact - 4

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

Use the checksums, digital signatures, and other validation mechanisms

to help detect file tampering. When an attacker attempts to manipulate

the application, the correct checksum is not preserved and this could

detect and prevent illegitimate execution. Note that such techniques are

not foolproof and can be bypassed by a sufficiently motivated attacker.

Checksum, digital signature and other validation techniques increase the

amount of time and effort an attacker must successfully spend to breach

the application. An application can silently wipe its user data, keys, or

other important data wherever tampering is detected to further challenge

an attacker.

References:

• iOS Tampering and Reverse Engineering

• iOS Platform Security & Anti-tampering Swift Library

• Cydia Impactor

• Repacking iOS Applications

Remediation Plan:

RISK ACCEPTED: The SteakWallet team accepted the risk of this finding.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://github.com/securing/IOSSecuritySuite
http://www.cydiaimpactor.com/
https://labs.f-secure.com/blog/repacking-and-resigning-ios-applications/


3.3 (HAL-03) MISCONFIGURED ATS (APP
TRANSPORT SECURITY) - LOW

Description:

Application Transport Security (ATS) was introduced by Apple in iOS 9 and

adds and controls another security layer regarding secure connections.

ATS is used by iOS to protect connections and prevent devices and ap-

plications to connect using insecure protocols, certificates, and cipher

suites. Within this additional protection layer, there is a configuration

field named NSAllowsArbitraryLoads that can be used to exempt or permit

the use of HTTP (non ciphered connections) for some specific domains.

Setting this flag to True or YES allows an application to send all the

information in plain text and eases attackers to perform Man-in-The-

Middle attacks. Furthermore, Apple forces developers to clearly justify

the use of this flag to accept the app publishing on the AppStore. If it

is not clearly justified, it can be rejected.

Halborn Team has detected that the iOS application has the flag

NSAllowsArbitraryLoads set to YES and has the localhost domain as an

exception as follows:

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Since NSExceptionAllowsInsecureHTTPLoads is set for localhost domain,

it seems to be a misconfiguration on the parent NSAllowsArbitraryLoads,

which should be set as False or NO

Risk Level:

Likelihood - 1

Impact - 4

Recommendation:

It is recommended to use the NSAllowsArbitraryLoads flag always set to

False or NO and set exceptions using the fields NSExceptionDomains in

order to except the using of HTTPS.

References:

• NSAllowsArbitraryLoads Docs

• OWASP Testing Network Communication

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://developer.apple.com/documentation/bundleresources/information_property_list/nsapptransportsecurity/nsallowsarbitraryloads
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06g-Testing-Network-Communication.md


Remediation Plan:

SOLVED: Verified that misconfigured parameters are now correctly set as

follows:

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) LACK OF ANTI-HOOK
ANTI-DEBUG MECHANISMS - LOW

Description:

The tested application does not have properly set security features or

mechanisms to prevent malicious actions, Anti Hook and Anti Debug. It

should be noted that the Debug.isDebuggerConnected() method has been

detected in the Android app and there are some virtualization tests,

but the test team has been able to successfully execute the objection

and Frida, indicating that these anti-debugging are not being properly

managed.

Example Command:

• Install Frida on the Android or iOS device

• Use the Objection Tool to investigate the Anti-Hook mechanisms in

the application. Objection

• Use the following command in the objection tool to investigate the

Jailbroken device.

Listing 6

1 objection --gadget "com.thesteakwallet.app" explore

• Run the following code on the objection.

Listing 7

1 com.thesteakwallet.app on (iPhone: 14.4) [usb] # ios

ë nsuserdefaults get

• You can see that an application does not terminate; therefore the

application has no anti-hook or anti-tamper mechanisms.

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/sensepost/objection


Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

Anti-Debug, Anti-Hook and Integrity Check mechanism (completed in na-

tive code), which will protect against injection of various types of

scripts into it, i.e., Frida Gadgets. The application should not allow

modifications in its operation.

References:

• iOS Platform Security & Anti-tampering Swift Library

• Owasp MSTG

• Android Google SafetyNet

Remediation Plan:

SOLVED: Due to the fact that the application keeps crashing when executing

it on rooted/jalbroken devices or using a patched app, it is a direct

consequence that the app implements anti-debug/anti-hook mechanisms.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/securing/IOSSecuritySuite
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x06c-Reverse-Engineering-and-Tampering.md
https://developer.android.com/training/safetynet/attestation


3.5 (HAL-05) MMKV LOGS LEAKED - LOW

Description:

Android logs can be used to debug applications and represent a useful

tool to analyze an application behavior. In some cases, developers and

third-party software leaks information that could be used by attackers

to deeply understand and exploit the solutions developed.

In this specific case, Halborn has detected in Android logs the use of

MMVK functionality. This piece of software is used to encrypt and decrypt

the files stored in:

- Android: /data/user/0/fi.steakwallet.app/files/mmkv

- iOS: /var/mobile/Containers/Data/Application//Documents/mmkv

Since the names of these files are secure.wallets.zustand or zustand.

default, it is clear that these files are managed by Zustand.

Halborn has not been able to decrypt these files, but they seem to be

encrypted using the keys stored on the keychain/keystore. Since that

keys are stored using good practices, this vulnerability has been marked

as Low.

Proof Of Concept:

1. Set the Debugging Options (USB Debugging) on Android device

2. Use LogCat to check logs from the device

Listing 8

1 adb logcat | grep -i steakwallet

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/pmndrs/zustand


Risk Level:

Likelihood - 3

Impact - 1

Recommendation:

It is recommended to not prompt any kind of logging information in

production releases. It can be used in the ‘ProGuard framework or modify

the source code to achieve this.

References:

• Android Shrink Code

• Android ProGuard

• Android LogCat

Remediation Plan:

SOLVED: No log found regarding sensitive MMKV information.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://developer.android.com/studio/build/shrink-code
https://github.com/Guardsquare/proguard?__hstc=95661891.6cde0e2b6fe09b91ea030b500cc8a58d.1649354935365.1649354935365.1649354935365.1&__hssc=95661891.1.1649354935365&__hsfp=3293470102&hsCtaTracking=c57149bc-1229-4b5c-b33e-da145f4c2a56%7C5712ef3a-d76c-4dfb-99c9-96274b4ee077
https://developer.android.com/studio/debug/am-logcat


3.6 (HAL-06) HARDCODED API KEYS -
INFORMATIONAL

Description:

API keys are used in mobile applications and other services to connect

to third-party solutions to share or gather information, interact with

user data and send statistics to aggregators and analysis tools. These

API keys can be considered as sensitive information since they allow

impersonating developers and products sending information or mixing fake

data within these statistics.

Halborn has been able to decompile Android source code and found an API

key and MIXPANEL tokens:

- COVALENT_API _KEY

- DEV_MIXPANEL_TOKEN

- MIXPANEL_TOKEN (prod)

Since API key found is used for querying crypto prices, this vulnerability

has been set as Low. Nevertheless, an attacker could use the mix panel

tokens to generate fake data and send it to SteakWallet project as is

discussed on this link.

Proof Of Concept:

1. Use a decompiling method such as MobSF framework or dex2jar tool

2. Go to fi/steakwallet/app/BuildConfig.java

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://community.mixpanel.com/sending-data-to-mixpanel-11/best-practice-for-protecting-mixpanel-token-in-web-4164


Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to not store sensitive information in local storagenor

hardcoded in source code as it can be read by anyone who has access to

the device or any application or malware installed on a rooted/jailbroken

device. Sensitive data hardcoded locally on the device should always be

encrypted and stored within the application sandbox. It is recommended to

encrypt sensitive data in the iOS Keychain and Android Keystore (similar

minimum version requirements).

References:

• Mixpanel Security Discussion

• OWASP Testing Data Storage

• OWASP Testing Data Storage - 2

• Keychain Item Access

• Keychain Services

• Keystore System

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://community.mixpanel.com/sending-data-to-mixpanel-11/best-practice-for-protecting-mixpanel-token-in-web-4164
https://github.com/OWASP/owasp-mstg/blob/master/Document/0x05d-Testing-Data-Storage.md
https://mobile-security.gitbook.io/mobile-security-testing-guide/ios-testing-guide/0x06d-testing-data-storage
https://developer.apple.com/documentation/security/keychain_services/keychain_items/restricting_keychain_item_accessibility
https://developer.apple.com/documentation/security/keychain_services
https://developer.android.com/training/articles/keystore


Remediation Plan:

PENDING: Postponed due to informational status and not related with

sensitive information. Going forward, the SteakWallet team will keep

them on its backend and retrieve them using a verified signature.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.7 (HAL-07) DEFAULT SEED KEY ON
RANDOMBYTESMODULE - INFORMATIONAL

Description:

Random modules are used for a wide range of functionalities and appli-

cations. They allow developers to generate random numbers or words, in

most of the cases, from a seed from which comes all the derivated val-

ues. Consecuently, having the same seed, may generate the same list of

pseudo-random values.

In this case, the Halborn Team has detected that java’s RandomBytesModule

is used. This module has its seed hardcoded by default, and it has not

being changed, nor derived from time or other secure generator.

Proof Of Concept:

1. Use a decompiling method such as MobSF framework or dex2jar tool

2. Go to bitgo/randombytes/RandomBytesModule.java

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to use a secure random generator based on time, user

behavior or, at least, modify the random seed to not generate the same

random sequence in most of the cases.

References:

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



• Java Secure Random Generator

• React RandomBytesModule Used

• SecureRandom Properly Seeded

Remediation Plan:

PENDING: The Steakwallet team will change the affected library in a future

release.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://github.com/mvayngrib/react-native-randombytes/blob/master/android/src/main/java/com/bitgo/randombytes/RandomBytesModule.java
https://wiki.sei.cmu.edu/confluence/display/java/MSC63-J.+Ensure+that+SecureRandom+is+properly+seeded


32

PERFORMED TESTS



4.1 Testing Application Binary
Protection

Unlike an Android application, an iOS binary can only be disassembled, not

decompiled. A Mach-O binary file is the app binary of an iOS application.

It is the machine code or executable file that runs on an iPhone. Complete

reverse engineering of an iOS application to produce the source code is

not possible. However, specified parts of library or object files can be

dumped using existing tools. This is where Otool comes in.

Proof Of Concept - iOS:

1. Run the following command on the jailbroken device.

Listing 9

1 otool -hv SteakWallet

2. In the image above, we can clearly see that ASLR is enabled. When

ASLR is disabled in an iOS application, certain memory structures

and modules will not be randomly placed, creating the potential of

a Buffer Overflow.

3. Next, the following command will examine Stack Smashing Protection.

Listing 10

1 otool -I -v SteakWallet | grep stack

33

PE
RF

OR
ME

D
TE

ST
S



4.2 Result

An application’s binary protection mechanisms are configured correctly.

34

PE
RF

OR
ME

D
TE

ST
S



4.3 Testing Keychain Secrets

Description:

Encryption keys are used to protect sensitive information in applications.

In blockchain-related mobile apps, these keys can be used to encrypt and

protect one of the most important assets over this kind of applications:

The mnemonic phrases. An attacker that can access this information

could manipulate and take control over every wallet action. It would be

possible to access to the keychain and use encryption keys to decrypt the

secret files, likely stored on /var/mobile/Containers/Data/Application/<

BUNDLE_ID>/Documents/mmkv.

Halborn’s Team has not been able to decrypt files, but encryption keys

exposure may lead to a loss of integrity and confidentiality. In addition,

these keys are protected via biometric authentication.

Proof of Concept (iOS):

• 1. Connect to the app via objection

Listing 11

1 objection --gadget com.thesteakwallet.app explore

• 2. Access to the keychain stored values

Listing 12

1 ios keychain dump

• 3. Get the wallets encryption key secret

35

PE
RF

OR
ME

D
TE

ST
S



Proof of Concept (Android):

• 1. Connect to the app via objection

Listing 13

1 objection --gadget fi.steakwallet.app explore

• 2. Access to the keychain stored values

Listing 14

1 android keystore list

• 3. Get the wallets encryption key secret

Result:

The application’s keystore and keychain mechanisms are correctly config-

ured.

36

PE
RF

OR
ME

D
TE

ST
S



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof Of Concept (iOS)
	Proof Of Concept (Android)
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Example Command
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof Of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof Of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof Of Concept
	Risk Level
	Recommendation
	Remediation Plan


	PERFORMED TESTS
	Testing Application Binary Protection
	Proof Of Concept - iOS

	Result
	Testing Keychain Secrets
	Description
	Proof of Concept (iOS)
	Proof of Concept (Android)
	Result



